-
1
Data Driven Decision Making (00:00)
-
Sesi 1 - DDDM
-
-
2
Data Exploration with Python Pandas (00:00)
-
(optional) Review Python
-
Sesi 2 - Introduction to Pandas
-
Sesi 3 - File Pendukung
-
Sesi 3 - Data Cleaning with Pandas
-
-
3
Data Visualization (00:00)
-
Sesi 4 - Basic Visualization
-
-
4
Statistical Analysis (00:00)
-
Sesi 5 - Descriptive Statistics
-
Sesi 6 - Inferential Statistics: Distributions, Confidence Interval, Hypothesis Testing
-
Sesi 6 - Inferential Statistics: Resampling, ANOVA
-
-
5
Machine Learning Models (00:00)
-
(optional) Introduction to Machine Learning
-
Sesi 7 - Regression: Linear and Polynomial Regression
-
Sesi 7 - Classification: Logistic Regression
-
(tips) Machine Learning Models: Overview
-
Sesi 8 - Classification: KNN
-
Sesi 8 - Classification: Naive Bayes, Decision Tree, Random Forest, SVG
-
-
6
Final Project (00:00)
-
Sesi 9 - Make Your Own Model!
-