Full Time Data Analytics - Phase 1
toggle menu
Raka Ardhi Prakoso

Full Time Data Analytics - Phase 1

Raka Ardhi Prakoso

Kurikulum Course

  • 1

    Welcome (00:00)

    • Phase 1 Overview

    • Reward of EE Journal

  • 2

    Week 1 (00:00)

    • Day 1 AM - Machine Learning Landscape

    • Day 1 PM - Machine Learning Problem Framing

    • P1W1D1 Non Graded Challenge - ML Problem Framing

    • Day 2 AM - Math for Machine Learning: Vector & Matrix

    • Day 2 PM - Math for Machine Learning: Multivariate Calculus (Derivative)

    • P1W1D2 Non Graded Challenge - EDA

    • Day 3 AM - Feature Engineering: Part 1

    • Day 3 PM - Feature Engineering: Part 2

    • P1W1D3 Non Graded Challenge - Feature Engineering

    • Day 4 AM - Linear Regression

    • Day 4 PM - Polynomial & Logistic Regression

    • P1W1D4 Non Graded Challenge - Model Training and Evaluation (Linear Regression)

    • Day 5 AM - Technical Test 1 - Business Use Case & Data Analysis

    • Day 5 PM - Graded Challenge 4

  • 3

    Week 2 (00:00)

    • Day 1 AM - Classification Model Evaluation

    • Day 1 PM - K-Nearest Neighbors (KNN) & Naive Bayes

    • P1W2D1 Non Graded Challenge - ML Problem Framing on Classification

    • Day 2 AM - Support Vector Machine (SVM)

    • Day 2 PM - Decision Tree & Ensemble Learning

    • P1W2D2 Non Graded Challenge - EDA

    • Day 3 AM - Hyperparameter Tuning

    • Day 3 PM - Algorithm Chains & Pipelines

    • P1W2D3 Non Graded Challenge - Feature Engineering

    • Day 4 AM - Milestone 1 Phase 0 Presentation

    • Day 4 PM - Data Balancing

    • P1W2D4 Non Graded Challenge - Classification Model

    • Day 4 PM - Career Assignments

    • Day 5 AM - Technical Test 2 - Python & SQL

    • Day 5 PM - Graded Challenge 5 - Classification

  • 4

    Week 3 (10:58)

    • Day 1 AM - Recommender System

    • Day 1 PM - Dimensionality Reduction

    • Day 1 - Career Class // Interview 101 - Self Learning

    • Day 2 AM - Clustering: Part 1

    • Day 2 PM - Clustering: Part 2

    • Day 3 AM - Time Series: Part 1

    • Day 3 PM - Time Series: Part 2

    • P1W3D3 Non Graded Challenge - Time Series

    • Day 4 AM - Communication Practice

    • Day 4 PM - Communication Practice

    • Day 5 AM - Technical Test 3 - ML - Data Preparation

    • Day 5 PM - Graded Challenge 6 - Unsupervised Learning

  • 5

    Week 4 (00:00)

    • Day 1 AM - Live Code 4 - Time Series

    • Day 1 PM - Anomaly Detection

    • Day 2 AM - Model Deployment

    • Day 2 PM - MLOps

    • Day 3 AM - Milestone Mentoring Session

    • Day 3 PM - Milestone Mentoring Session

    • Day 4 AM - Free Time

    • Day 4 PM - Free Time

    • Day 5 AM - Free Time

    • Day 5 PM - Free Time

Prasyarat

Menunggu data...

Instructor

Raka Ardhi Prakoso

Curriculum Developer and Instructor

certificate-thumbnail

Sertifikat untuk Course ini

Sertifikat kelulusan akan diberikan sebagai penghargaan dan bukti bahwa kamu telah menyelesaikan course ini. Sertifikat ini dapat digunakan untuk menambah nilai CV kamu.